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Abstract

The structural covariance network (SCN) has provided a perspective on the large-

scale brain organization impairment in the Alzheimer's Disease (AD) continuum. How-

ever, the successive structural impairment across brain regions, which may underlie

the disrupted SCN in the AD continuum, is not well understood. In the current study,

we enrolled 446 subjects with AD, mild cognitive impairment (MCI) or normal aging

(NA) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The

SCN as well as a casual SCN (CaSCN) based on Granger causality analysis were

applied to the T1-weighted structural magnetic resonance images of the subjects.

Compared with that of the NAs, the SCN was disrupted in the MCI and AD subjects,

with the hippocampus and left middle temporal lobe being the most impaired nodes,

which is in line with previous studies. In contrast, according to the 194 subjects with

records on CSF amyloid and Tau, the CaSCN revealed that during AD progression,

the CaSCN was enhanced. Specifically, the hippocampus, thalamus, and precuneus/

posterior cingulate cortex (PCC) were identified as the core regions in which atrophy

originated and could predict atrophy in other brain regions. Taken together, these

findings provide a comprehensive view of brain atrophy in the AD continuum and

the relationships among the brain atrophy in different regions, which may provide

novel insight into the progression of AD.
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1 | INTRODUCTION

Alzheimer's disease (AD) is one of most common neurodegenerative

diseases and has high morbidity and mortality in the aging population

worldwide (Li et al., 2015; Petersen, 2004; Weiner et al., 2017). Brain

atrophy is a typically reported symptom of AD, and magnetic resonance
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imaging (MRI) provides an opportunity to investigate brain atrophy in

large in vivo samples (Pini et al., 2016). Many previous studies have

focused on the structural covariance network (SCN), which describes

how structural measures of different brain regions covary across sub-

jects, and found that AD as well as mild cognitive impairment (MCI)

patients tend to have a disrupted SCN (Alexander-Bloch, Giedd, &

Bullmore, 2013; Chong et al., 2017; He, Chen, & Evans, 2008;

Montembeault et al., 2016; Seeley, Crawford, Zhou, Miller, &

Greicius, 2009). These results provide a perspective on the impairment

of large-scale brain organization (He et al., 2008; Li et al., 2019;

Montembeault et al., 2016) and the pathology of AD at the regional

level, which may also be related to amyloid or Tau pathology (Chang,

Huang, Chang, Lee, & Chang, 2018; Voevodskaya et al., 2018).

However, the biological basis of the SCN is still not well under-

stood. It may be related to many different factors such as synchronous

GM growth/atrophy and/or effect from shared genetic factors

(Alexander-Bloch et al., 2013), disease pathology (Seeley et al., 2007),

white matter fiber connectivity (Gong, He, Chen, & Evans, 2012). Spe-

cifically, for AD, it is reasonable to suspect that an enhanced SCN may

be related to the synchronous progression of neurodegeneration across

regions and that a disrupted SCN may be related to only one affected

region but not another. To better understand previous SCN studies as

well as AD pathology at the whole-brain level, it is valuable to investi-

gate the synchrony and succession of brain morphological changes

across brain regions in AD. Recently, Granger causality analysis (GCA)

(Seth, Barrett, & Barnett, 2015) was utilized to reveal the causal effects

of the atrophy of different brain regions across patients with increasing

levels of epilepsy severity (Zhang et al., 2017). We anticipate that

applying GCA to the sequence of morphometry data from normal aging

to mild cognitive impairment (MCI) and finally to AD may reveal the

successive effect on the SCN of the atrophy of different brain regions.

Therefore, in the current study, we hypothesize that during AD pro-

gression, the disrupted SCN is mainly related to a progression of neu-

rodegeneration that successively affects different brain regions. The

causal SCN (CaSCN) (Zhang et al., 2017) may provide a more compre-

hensive view of brain atrophy patterns in AD and may possibly be

enhanced during AD progression. Specifically, we aim to: (a) use source-

based morphology (SBM) (Harenski, Harenski, Calhoun, & Kiehl, 2020;

Hopkins et al., 2019; Xu, Groth, Pearlson, Schretlen, & Calhoun, 2009)

on AD data to find representative AD-related spatial components;

(b) investigate casual SCN models to find the regions whose atrophy can

drive other regions during AD progression; (c) apply a combination of the

sliding window method (Allen et al., 2014) with GCA for these compo-

nents to demonstrate whether and how these effects change across

populations with increasing levels of disease severity.

2 | MATERIALS AND METHODS

2.1 | Participants

Data used in the preparation of this article were obtained from the

Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.

usc.edu). The ADNI was launched in 2003 as a public-private partnership

led by Principal Investigator Michael W. Weiner, MD. The primary goal

of the ADNI is to test whether magnetic resonance imaging (MRI), posi-

tron emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure the

progression of mild cognitive impairment (MCI) and early Alzheimer's dis-

ease (AD). For more information, please see www.adni-info.org.

Our data cohort consists of 3D T1-weighted MRI data from nor-

mal aging controls (NAs) and MCI and AD subjects obtained from the

ADNI-1, ADNI-2, ADNI-3 and ADNI-GO databases. The inclusion

criteria were as follows: (a) Subject had to have “MPRAGE/MP-

RAGE” images acquired by 3.0T scanners, with a thickness of 1.2 mm

or 1.0 mm and an in-plane resolution of 1 mm � 1 mm; (b) the age of

the subjects had to be between 60 and 80 years. Furthermore, if the

subject had more than one set of MRI data, the first MRI obtained

was included in the cohort. Under these criteria, 574 sets of

T1-weighted images were downloaded, each for a different subject. A

total of 114 subjects were excluded because of insufficient imaging

quality (obvious artifacts and/or failed segmentation in the subse-

quent voxel-based morphometry analysis). Another 14 subjects were

excluded to match age and gender between groups; therefore,

446 subjects were included in the subsequent data analysis. A total of

194 subjects (85 NA, 59 MCI and 50 AD) also had cerebrospinal fluid

(CSF) biomarker records, including Aβ, Tau and P-Tau measures. All

subjects had age, gender data and Mini-Mental State Examination

(MMSE) information in their records. All except four subjects had edu-

cation records. The four subjects without education information were

treated as if they had the average years of education of all other sub-

jects in our data. The demographic, cognitive and CSF biomarker data

used in the current study are stated displayed (Table 1). The CSF bio-

marker is “using the micro-bead-based multiplex immunoassay, the

INNO-BIA AlzBio3 RUO test (Fujirebio, Ghent, Belgium), on the Luminex

platform,” which provided by ADNI as “UPENN Biomraker.”

2.2 | Voxel-based morphometry

Standard voxel-basedmorphometry was first performed for all the images

to generate a voxel-wise gray matter volume map for each subject. The

data processing was carried out by using SPM12 (http://www.fil.ion.ucl.

ac.uk/spm) with DARTEL method (Ashburner, 2007). The images were

transformed into MNI space and resampled to 1.5 � 1.5 � 1.5 mm3. All

images were segmented into three tissue classes, representing gray mat-

ter (GM), white matter and CSF. Modulated GM maps were generated

such that the value in each voxel represents the GM volume. The GM vol-

ume maps were further smoothed with 6 mm FWHM, and the results

were used for subsequent morphological analyses.

2.3 | Source-based morphometry (SBM)

The SBM analyses in the current study followed the original SBM

study by Xu and colleagues (Xu et al., 2009) and were carried out by
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the GIFT toolbox (http://icatb.sourceforge.net). First, given that not

all the images covered the whole cerebellum, a brain mask without

the cerebellum was applied on all the GM volume maps. Then, all the

GM volume maps were concatenated together into a set of 4D MRI

images. During SBM, the spatial dimensions (x, y, z) were converted

into one dimension; therefore, the whole dataset was converted to an

m � n matrix D, where m is the voxel number within the mask and n is

the subject number (therefore, here n is 446). This matrix (D) was then

decomposed by independent component analysis (ICA) into two

matrices, a mixing matrix (M) and a source matrix (S), where D = M*S.

The mixing matrix M is a k � n matrix that expresses the score of each

of the n subjects for each of k components. Similarly, the source

matrix S is an m � k matrix that expresses the scores of each voxel in

each of the k components, which can be mapped back to the brain

voxels to generate k spatial maps. For the data used in the current

study, k was first estimated by GIFT through Akaike's information cri-

terion, resulting in a value of 20. Therefore, 20 components were

extracted, and we marked them as component A to component T.

2.4 | Group differences

The mixing matrix was used for statistical analysis of the compo-

nents among the groups. For every column in the mixing matrix M,

the parameters expressed a score measuring the contribution of

every component for the 446 subjects. In other words, the score of

one component across different subjects represented the individual

differences in the volume of this component. Therefore, ANOVA

was applied with age, gender, and education as covariates to investi-

gate whether there were significant group differences among the

AD, MCI, and NA groups for each component. False discovery rate

(FDR) correction was used to control for the 20 applications of

ANOVA (one for each component). The significance level was set

to p < .05.

2.5 | Structural covariance

The SCN was calculated based on SBM components. Namely, instead of

typical SCN analysis, we did not calculate the correlation of volume/mor-

phological properties among voxels or predefined ROIs, but between the

SBM components. Specifically, SBM gives each subject a score for each

component, which represent the volume of this subject on such “distinct
regions with common covariation among subjects,” and therefore we

can directly apply correlation analysis on these scores to generated SCN

results. In detail, for each group of AD, MCI and NA, Pearson's correla-

tion analysis with age, gender and education as covariates was per-

formed on the subject scores between each pair of the 20 components.

Then, an interaction analysis was also utilized to evaluate whether the

correlation was significantly different among the AD, MCI, and NA

groups. FDR correction was applied for all possible component pairs

(20 � 19/2 = 190), and the significance level was set to p < .05.

2.6 | Causal structural covariance

The CaSCN was generated here by applying Granger's causality analysis

(GCA) on the constructed SCN. GCA was first proposed for determin-

ing whether the past value of one time course could predict the current

value of another time course. If the current value of time course

Y could be more accurately estimated by a combination of past values

of time courses X and Y than by the past value of Y itself alone, then

we define that X has Granger causal influence on Y. In the neuroimag-

ing field, GCA is more often used to investigate the causal relation

between functional MRI time courses (Seth et al., 2015). However, it

also has potential for evaluating causal relationships between changes

in the morphometry of different brain regions if an order among sub-

jects can be identified, as indicated by Zhang et al. (2017).

In the current study, the CaSCN was used to investigate the

causal volume changes among components as the severity of AD

TABLE 1 Demographic and CSF biomarkers

NA MCI AD F/chi-squareda df p value

Subjects (all) 171 124 151

Age (yr.) 72.6 ± 4.6 72.6 ± 5.3 72.7 ± 4.9 <0.0001 (2,443) .996

Gender (m:f) 78:93 72:52 73:78 4.71 2 .095

MMSE score 29.1 ± 1.2 26.8 ± 2.2 23.1 ± 2.2 423.92 (2,443) <.001

Education (yr.) 16.2 ± 2.6 15.4 ± 3.2 15.2 ± 3.1 5.02 (2,443) .007

APOEε4b 6/46/113/6 26/47/50/1 35/70/37/8 69.56 6 <.0001

Subjects (with CSF record) 85 59 50

CSF Aβ42 (ng/l)c 202 ± 52 158 ± 49 132 ± 29 38.42 (2,191) <.001

CSF tau (ng/l)c 68 ± 37 110 ± 74 128 ± 47 22.67 (2,191) <.001

CSF P-tau (ng/l)c 30 ± 16 37 ± 20 47 ± 22 13.69 (2,191) <.001

aThe chi-squared test was used for gender and APOE, and ANOVA was applied to all other variables.
bThe number (a/b/c/d) means there are a of subjects were APOEε4 homozygote; b of subjects were heterozygote; c of subjects were without APOEε4; d
of subjects APOE data is missing.
cOnly those subjects with CSF measures were counted.
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increased. To define a quantification order of AD severity, CSF Aβ,

CSF Tau and CSF P-Tau were utilized. Specifically, given that the raw

numbers of these measures were non-normally distributed, we first

log-transformed these three measures and then normalized them into

Z-scores. The Z-scores of Tau and P-Tau and the inverse Aβ Z-scores

(given that a lower CSF Aβ value indicates AD, not NA, but lower Tau

and P-Tau indicates NA, not AD) were averaged together as the CSF

biomarker Z-score. The subjects were then ordered from smallest to

largest average CSF biomarker Z score. In the current study, we

assumed that this order represents the progression of AD progressing

from least to most sever and used this order in all the following

CaSCN steps. Given that only 194 subjects had CSF biomarker data,

the CaSCN was based on these subjects only. Additionally, to control

the effects of age, gender and education, the residuals of all atrophied

component scores after regressing out age, gender and education

were used in the CaSCN analysis and corresponding permutation test.

The residuals of each component were reordered by the CSF bio-

marker Z scores of the subject, and GCA was applied for each pair of

“pseudo time series” of the residuals of all components using REST

(Song et al., 2011) and following Chen's algorithm (Hamilton, Chen,

Thomason, Schwartz, & Gotlib, 2011; Stephan & Roebroeck, 2012).

Considering two “pseudo time series,” X and Y. A GCA model can be

defined as follows:

Yt ¼
Xp

i¼1

AiX t�ið Þ þ
Xp

i¼1

BiY t�ið Þ þCZtþεt

The significance of coefficient Ai describes the causal relation from

X to Y at rank i. In the current study, the rank of GCA, namely, p was

set to 1 and we did not considering higher rank as most previous stud-

ies (Zhang et al., 2017). A positive GCA coefficient means that the

Y values changed in the same direction as X, and a negative GCA coef-

ficient means Y would increase as X decreases and vice versa.

Given that the number of subjects with CSF biomarker records

was relatively small, we did not apply the CaSCN for each group

(especially for AD and MCI, for which there were only 50/59 subjects.

Non-GCA coefficients reached the significance threshold).

2.7 | The driving nodes

To extract the most important causal relations among the structural

covariance components from the 20 � 20 network, we calculated the

driving scores as in a previous study on fMRI data (Yan & He, 2011)

for the components showing significant difference among AD, MCI

and NA groups, which means they have atrophied during AD pro-

gressing. The driving score of one component is defined as the sum of

the GCA coefficients from this component to all other components.

Positive and negative driving scores were calculated respectively as

sum of all positive/negative GCA coefficients.

To test the significance of these driving scores, a permutation-

based test was applied to validate the significance of all the driving

scores. For each permutation, the order of the subjects was

randomized, and the CaSCN was analyzed for this randomized new

pseudo series and all the GCA coefficients were recorded. After 1,000

permutations, we calculated the driving scores for 1,000 permuta-

tions, resulting in 20,000 positive and negative diving scores. We

defined scores within the 5% tails of the distribution as significant at

p < .05. The components that had significant driving scores were

defined as the driving nodes of brain atrophy during AD progression.

2.8 | Sliding-window CaSCN of the driving nodes

Sliding windows were applied to the components that had significant

driving scores. Specifically, we computed the casual GCA coefficients

from the driving nodes to all other atrophied components for

145 “sliding windows.” Each window consisted of 50 subjects: the 1st

window consisted of the 1st subject to the 50th, the second window

consisted of the subject from the 2nd to 51st, and so on to the last

window, which consisted of the 145th to 194rd subjects. Therefore, if

we have x atrophied components and y of them were driving nodes,

there would be (x � 1) � y GCA coefficients for each sliding window.

The significance of the GCA coefficients was also defined by per-

forming another 1,000 permutation tests. For each permutation,

50 subjects (same as the window length) were randomly selected and

ordered, the CaSCN was analyzed, and the GCA coefficients in a slid-

ing window were defined as significant if they were within the 5%

tails of the distribution for p < .05. Finally, to assess how these signifi-

cant GCA coefficients changed from the least to most severe win-

dows, the k-means clustering algorithm was applied to these

windowed GCA coefficient matrices, where the number of clusters

was determined by the top 2 to top 15 mean silhouette coefficients.

3 | RESULTS

3.1 | Source-based morphometry (SBM)

As shown in Figure 1, SBM decomposed all the variance of the GM

volumes across subjects in our data into 20 components. Component

A was mainly located in the left middle temporal lobe, while compo-

nent K was in the right middle temporal lobe. Components D, E and I

were all located in the bilateral temporal lobes in different but adja-

cent regions (superior, middle and inferior, respectively). Component

O was in the bilateral temporal poles. Components B and R over-

lapped with the medial and lateral parts of the sensorimotor regions,

respectively. Components L and T were in the medial and lateral mid-

dle occipital visual regions, respectively, and J was located in the

superior occipital lobe. Components F, M and N were in the inferior,

middle, and superior parts of the frontal lobe, respectively.

Components C, G and P were in the thalamus, hippocampus, and stri-

atum. Component S was located in the superior parietal lobe, compo-

nent H was located in the lingual gyrus, and component Q was

located in the precuneus and post cingulate cortex (PCC), which is an

important hub in the default mode network.
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In Figure 2, the results of ANOVA after FDR correction (p < .05)

revealed that 14 of the 20 components showed significant group dif-

ferences among the AD, MCI and NA groups: A (F = 20.37,

p < .0001), C (F = 3.51, p = .031), E (F = 10.35, p < .0001), F

(F = 3.45, p = .033), G (F = 61.86, p < .0001), I (F = 21.61, p < .0001),

J (F = 15.46, p < .0001), K (F = 27.63, p < .0001), L (F = 7.02,

p ≤ .001), O (F = 20.80, p < .0001), Q (F = 13.13, p < .0001), R

(F = 4.23, p = .015), S (4.94, p = .0076) and T (F = 4.60, p = .010).

These components are mainly located in temporal and subcortical

regions (A, C, E, G, I, K, O) but also involved the parietal (S, J), visual (L,

T), frontal (F), sensorimotor (R) and default mode networks (Q). In post

hoc analysis, most of these components showed significant differ-

ences between each of the three groups. However, MCI showed no

significant difference from NA in components C, E, F, L, Q and

S. There was no significant difference between AD and MCI in com-

ponents C and T.

3.2 | Structural covariance

As illustrated in Figure 3, the SCNs of 11 pairs of components showed

significant differences among the three groups. The highest structural

covariance was found for the NAs, followed by the MCI group, and

the AD group had the lowest. It is also worth noting that all these sig-

nificant pairs involved component A (left middle temporal lobe) or G

(hippocampus), indicating their important role in SCN changes in AD

and MCI.

3.3 | Driving scores of the causal structural
covariance

As shown in Figure 4, among all 20 components, three showed a sig-

nificant positive driving score (permutation test, p < .05), which was

defined as the sum of GCA coefficients from the corresponding com-

ponent to all other components: component C, located in the thala-

mus, component G, located in the hippocampus, and component Q,

located in the PCC/precuneus. None of the negative driving scores

reached a significant level. A high positive driving score indicated that

during AD progression, the volume alterations in the corresponding

component could predict other component volume alterations. These

three driving components were further involved in the following slid-

ing window analyses.

3.4 | Sliding-window causal structural covariance

As shown in Figure 5, as the window slid from the least to the most

severe subjects, the GCA coefficients from the three driving compo-

nents to other components also changed. In the less severe windows,

F IGURE 1 Source-based morphometry (SBM) component spatial maps. SBM estimated 20 structural covariance components (A–T) from
446 subjects, including those with AD and MCI and NAs. Coronal, sagittal, and axial views of the spatial map for each component are shown here.
Images are the z statistics (from yellow to red, 2.0 to 5.0) overlaid on the high-resolution structural template. Left on the images indicates the left
side of the subjects. Except for component A, which was only located on the left hemisphere, all sagittal images show the right hemisphere

QING ET AL. 5



F IGURE 2 Group differences of the components of the source-based morphometry (SBM). Fourteen of the 20 components showed
significant group differences according to ANOVA among the AD, MCI and NA groups (p < .05, FDR corrected across 20 components). The lines
between two groups under each boxplot indicate a significant group difference according to post hoc analysis (p < .05)

6 QING ET AL.



F IGURE 3 The structural covariance between components was different among the different groups. According to the interaction analysis,
there were significant differences in the correlations of the components' Z-scores across subjects for 11 component pairs (p < .05, FDR corrected
across pairs). In the scatter plots, each point represents one subject, and the coordinates are his/her Z-scores for the two listed components,
whose images were shown at the ends of the axes. Subjects from different groups are marked in different colors, and the F-statistic was used to
investigate the interaction effects. The diagram in the bottom right shows the locations for all the component pairs that had significant group
differences in structural covariance
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the significant GCA coefficients were quite sparse. In more severe

windows, the significant GCA coefficients were denser. Moreover, in

the severer part, the GCA coefficients patterns were more consistent

across windows, and GCA coefficients was higher when closer to the

most severe end (Figure 5b).

To visualize these progresses of GCA coefficients patterns from

least to most severe windows, we used the 57 GCA coefficients

from these three driving components (3 driving nodes, each of which

has 19 GCA coefficients to all other components) as features, and the

k-means clustering algorithm was utilized to divide the 145 sliding

windows into clusters. The mean silhouette coefficient reached its

maximum value (0.54) for 3 clusters (from 2 to 20 clusters). Therefore,

the 145 sliding windows were divided into 3 clusters: cluster 1 had

71 windows, which mainly included NA subjects, and clusters 2 and

3 contained 42 and 32 windows, which mainly included AD and MCI

patients, respectively (Figure 5b).

The average GCA patterns within each cluster in Figure 5c give

out a representative visualization of the least to most severe changing

progress more clearly. In cluster 1, a relatively low portion of sliding

windows had significant GCA coefficients from any of the driving

node components. In cluster 2, the small number of edges showed

that brain atrophy originated from the driving nodes in the hippocam-

pus, thalamus and PCC/precuneus to the temporal and parietal

regions but also spread to the frontal and occipital regions. In cluster

3, which contained the most severe patients, the casual effect from

these three driving node components was most significant (nearly

100% of sliding windows in this cluster), and the brain atrophy casual

effect radiated from the driving node components into most of the

temporal and subcortical components and some of the occipital and

parietal components.

4 | DISCUSSION

By utilizing and combining source-based morphometry, structural

covariance and Granger causality analysis, the current study investi-

gates brain atrophy during AD progression in a large structural MRI

data cohort. Specifically, (a) the individual volume differences

between the AD/MCI and NA populations can be decomposed into

20 components. These components show brain atrophy mainly in

F IGURE 4 Causal SCN analysis
and the “driving nodes.”
(a) Schematic plot of Granger
causality analysis (GCA). The GCA
coefficients were calculated from
one to another component by their
volume scores after ordering the
sequence of AD-related CSF
biomarkers from least to most

severe. The driving score of a
component was defined as the sum
of all GCA coefficients from the
corresponding component to all
other components. The significance
was defined by a permutation test,
and the threshold was p < .05. Both
positive and negative GCA
coefficients were calculated (not
shown in the figure). (b) Driving
scores of the components that
showed significant group
differences among AD, MCI and
NA. Three of the components (C,
thalamus; G, hippocampus; and Q,
PCC/precuneus) showed significant
positive driving scores, which
indicated that during AD
progression, their volume alterations
can predict other component
volume alterations. These significant
driving components were further
investigated by a sliding window
method
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temporal and subcortical regions but also spread into frontal, parietal

and even visual and sensorimotor regions; (b) the structural covari-

ance between these components further indicated that the hippocam-

pus/temporal regions comprised the most important node that

showed a disrupted SCN in MCI and AD; (c) by using CaSCN and slid-

ing window, we found that during AD progression, the hippocampus,

thalamus and default mode cores have atrophy patterns that can pre-

dict atrophy in other components, and such predictions among com-

ponents may be quite different along the spectrum from normal aging

to the most severe manifestation of AD.

According to the results from SBM, the individual differences in

brain volume across the AD/MCI/NA population were divided into

20 components. Specifically, the temporal lobe was decomposed

into seven components (including the hippocampus), while there were

only three components in the frontal and occipital lobes, two compo-

nents in the sensorimotor areas and only one component in the parie-

tal lobe. This is not surprising because AD pathology first occurs in

the temporal regions (Braak & Braak, 1995; Duara et al., 2008;

Granadillo, Paholpak, Mendez, & Teng, 2017). The different compo-

nents obtained with SBM in the temporal lobe may indicate that there

F IGURE 5 The GCA coefficients from the driving node components vary according to AD progression. (a) The GCA sliding window method.
A total of 194 subjects with CSF records were ordered from least to most severe. Each sliding window contained 50 subjects, and 145 such
sliding windows were obtained from least to most severe. The GCA coefficients were calculated for each sliding window. (b) The sliding window
results of the GCA coefficients for the three driving nodes. The upper plot shows the number of subjects with AD, MCI and NA within each
sliding window. The middle plot shows the mean Aβ, Tau and P-Tau values of all subjects within each sliding window. The bottom panel shows
the GCA coefficients from the three driving node components (C, thalamus; G, hippocampus; and Q, PCC/precuneus) to all other components for
each sliding window. Only significant GCA coefficients (by permutation test, p < .05) are shown here. The output GCA coefficients from the three
driving nodes of each sliding window can be further divided into 3 clusters by k-means clustering, and the boundaries of the resulting clusters are
also marked in all three subfigures in (b). (c) The detailed GCA results from the three driving nodes in each of the k-mean clusters. The arrow
direction indicates the driving direction, and the width represents the proportion of significant sliding windows in the whole cluster
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are complex and differentiated volume differences in the temporal

lobe across subjects, which may suggest that different parts of the

temporal lobe are influenced by different pathological, genetic or

environmental factors during AD progression (Alexander-Bloch

et al., 2013). In contrast, the frontal, occipital and parietal lobes were

spared until late-stage AD (Apostolova et al., 2007; Middelkoop

et al., 2001; Pini et al., 2016); therefore, fewer components can be

found by SBM in these regions.

Consistent with previous studies, groupwise differences among

the AD/MCI population and the NAs were found in most of the SBM

components located in widespread regions in the brain, including tem-

poral, parietal, frontal, default mode, subcortical, and occipital regions

(Apostolova et al., 2007; Pini et al., 2016; Prestia et al., 2010). Most of

these components showed significant differences between each pair

of the three groups, indicating continuous atrophy, while some of the

components, such as those in the frontal, parietal, and occipital

regions, indicated no significant atrophy in MCI, consistent with previ-

ous reports (Braak & Braak, 1995; Ferreira et al., 2016; Fiford

et al., 2018; Jagust, 2018; Ting et al., 2015). The default mode net-

work was shown to be a core region of brain alteration during AD pro-

gression, and functional alterations of the default mode network at

the MCI stage have been previously reported (Franzmeier et al., 2017;

Grothe et al., 2016; Ossenkoppele et al., 2015). Our results suggest

that atrophy in this region may only be found in the AD group.

The structural covariance among the components also showed

alterations in a network whose core regions were components G and

A. These two components are located in the hippocampus and middle

temporal lobe, respectively. As mentioned above, AD-related changes

in structural covariance may be difficult to interpret. A disrupted SCN

may indicate that some independent factors affected one region but

not another, and therefore, they lost covariance across subjects.

Therefore, this result provides additional evidence that the hippocam-

pus is an important and early impaired region in AD (Albert

et al., 2011; Sperling et al., 2011) and may have a more dramatic and

earlier atrophy pattern than other components (Alexander-Bloch

et al., 2013). The atrophy in component A, which was located in the

left middle temporal lobe, overlapped with the auditory language area.

This may be a symbol of logopenic-variant primary progressive apha-

sia (Ossenkoppele et al., 2015), which leads to a different atrophy

model in these variant patients but not others and therefore leads to

attenuated covariance; however, this needs to be verified in a future

study.

The CaSCN results further indicated that component G, namely,

the hippocampus, was a “driving core,” whose volume alteration pat-

tern was “ahead of” the volume alteration of other components

across the sequence from normal aging or less severe AD to more

severe AD. Moreover, components C and Q, which are located in the

thalamus and PCC/precuneus, respectively, were also identified as

“driving cores.” This result indicated that brain atrophy in these three

regions may predict atrophy in other regions. The identification of the

hippocampus as a driving core is also consistent with previous views

of the progression of AD pathology across brain regions (Apostolova

et al., 2007; Braak & Braak, 1995; Halliday, 2017; Weiner

et al., 2017). Similarly, the PCC/precuneus, as a hub region of the

default mode network, has also been identified as an AD-related

region (Franzmeier et al., 2017; Grothe et al., 2016; Ossenkoppele

et al., 2015). The thalamus was recently recognized as another early

and important pathologically impaired region in AD (Aggleton, Pralus,

Nelson, & Hornberger, 2016; Moustafa, McMullan, Rostron,

Hewedi, & Haladjian, 2017; Rüb et al., 2016; Štěp�an-Buksakowska

et al., 2014). Our current study provided new evidence that macro-

scopic atrophy in these regions may be a prelude of more widespread

brain deterioration. Furthermore, the sliding window results indicated

that this a driving effect may be very different in normal aging or less

severe AD than in moderately and very severe AD. This may be

because of the compensatory effects that appear during very early

AD. In the MCI and AD populations, the driving effect of these three

core regions is very stable and strong, indicating dramatic volume

alterations through the AD pathological pathways from these regions

to other temporal regions and then to occipital, parietal and frontal

regions. It is also worth noting that sensorimotor areas, such as those

where component B is located, are driven in the less severe stages

but not in the more severe stages, and component B also did not

show significant group difference. This may suggest a “very early

impaired but spared until very late stage” pattern but needs further

investigation by pathological studies.

It is also worth noting that the SCN was shown to be disrupted in

MCI and AD. However, the CaSCN was enhanced during AD progres-

sion. This can be expected since neurodegeneration occurs in some

regions and then spreads to others; therefore, the covariance

between regions decreases. However, the CaSCN can reveal succes-

sive atrophy among regions in MCI and AD, which is much weaker

and has no uniform pathway in the normal aging population. How-

ever, the decreased SCN and enhanced CaSCN did not perfectly over-

lap, and there may also be some other mechanisms underlying the

disrupted SCN seen at different levels of pathological aging, which

needs future investigation.

There were some potential factors may affect our results. First is

the window length during CaSCN analysis. The window length is set

to be 50 in the current study. We also applied window length as 30 or

70 again. The results in sliding windows with length 30 or 70 showed

high similarity to those with length 50 if they contained overlapped

subjects (see Figure S1). The other factors may be the sites effects.

Given ADNI is a multi-site dataset, the difference of sites may affect

our results. However, the 446 subjects including in the current study

was from 58 sites and some sites have very few subjects, which may

make a regression or other mode control site effect ill-posed. Here we

utilized a recent provided “Combat” method, to validation our

results(Fortin et al., 2018; Yu et al., 2018). After excluding 38 subjects

which were from those sites only contributed 3 or less subjects, our

results were well reproduced using remain data with Combat correc-

tion (see Figures S2–S4). Therefore, our results were robust to both

site and window length effects.

The current study still has some limitations. The most important

one is that in the GCA analysis, the “single steps” are from one subject

to another, which may not be identical as they are in fMRI (in which
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the steps are always the same; one step is one TR, often 2S). Addition-

ally, the CSF biomarker Z score was created as a compromise measure

and obtained by combining Aβ, Tau and P-tau because there is no gold

standard to quantitively define which single subject is more severe

than another (Jack Jr. et al., 2018). Similarly, the GCA coefficients

matrices may not fit all the assumption of K-means. Therefore, the

GCA analysis including the CaSCN, sliding window CaSCN and K-

means analysis in the current study, which is based on a “least to most

severe” sequence, is more qualitative than quantitative. The second

main limitation is that the across-subject correlation-based analyses,

including SBM, SCN and CaSCN, were all based on a group of sub-

jects, making it difficult to provide information regarding single-

subject diagnoses or predictions (Alexander-Bloch et al., 2013), and

hard to exclude the individual difference of specific covariance net-

work revealed by some recent study(Cui et al., 2020). The diagnosis of

AD and MCI was all provided by ADNI which is based on clinically

diagnosis rather than biomarkers, and the data of CSF is not available

for all subject and hardly to define if they all meet the new criterial

like “ATN” (Jack Jr. et al., 2018) and also lack of information to distin-

guish subtypes like if they were the late-onset (LOAD), early-onset

(EOAD) or autosomal dominant AD (ADAD) (Jagust, 2018). Therefore,

our results were based on a possible mixture of different neurobiolog-

ical mechanisms. Additionally, to ensure the homogeneity of the imag-

ing data, we used strict standard for the sequence and resolution, and

only small portion of ADNI data can be included. However, this makes

there is an insufficient number of subjects especially for those with

CSF records, and prevented us from directly comparing the SCN and

CaSCN. Finally, the current study used a cross-sectional data cohort,

so these causal effects should be validated in longitudinal data in the

future.

In conclusion, the current study provided a comprehensive view

of brain atrophy in the AD continuum and the relationships among

the brain atrophy in different regions. The hippocampus, default mode

network and thalamus were identified as core regions in which brain

atrophy originated, and their atrophy may predict subsequent wide-

spread atrophy in other brain regions. Our results provide casual or

sequential patterns of brain atrophy across the whole brain, which

may provide new insight into understanding the progression of AD.
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